AI探索指南
这可能是今年最重要的AI新闻,但中文互联网还没什么人聊。 昨天,一家成立不到三年的多伦多芯片公司扔下了一颗核弹。他们不是做大模型的,不是做应用的,而是做了一件听起来很复古的事:把AI模型直接刻在芯片里。 这家公司叫 Taalas。他们做的芯片 HC1,运行 Llama 3.1 8B的速度是 17000 tokens/秒。作为对比,目前业界最快的 GPU 也就 2000 左右。十倍差距。 但这还不是最疯狂的。最疯狂的是,这块芯片只能跑这一个模型。不能换,不能改,不能升级。你买回家,它就永远只会做这一件事:以光速运行…
但代价也是真实的。这块芯片出厂那一刻,它的命运就已经注定。Llama 3.1 8B,就是这个芯片这辈子唯一能做的事。如果明年 Meta 发布了 Llama 4,这块芯片就变成了电子垃圾。如果你发现这个模型有偏见,或者在你的应用场景里效果不好,你不能微调它,不能换别的模型,只能再买一块新芯片。

Taalas 的解决方案是:把定制芯片的周期从一年压缩到两个月。他们和台积电合作,只改变两层金属掩膜,就能为不同的模型生产新芯片。他们声称训练一个模型要花十亿美元,而定制一块这样的芯片只要花一千万。

说到这个团队的背景,确实豪华得有点过分。CEO Ljubisa Bajic 是 Tenstorrent 的创始人,之前在 AMD 和 NVIDIA 都做过架构师。COO Lejla Bajic 是他的妻子,同样是 AMD 和 Tenstorrent 的资深工程师。CTO Drago Ignjatovic 是前 AMD 的 ASIC 设计总监。这三个人加起来,可能设计了过去十年里你用过的一些最重要的芯片。

2022 年,当 Jim Keller 加入 Tenstorrent 并接管公司后,Ljubisa 选择了离开。六个月后,他创立了 Taalas。显然,他和 Keller 对 AI 芯片的未来有不同的看法。Keller 想做一个通用的、可编程的、软件友好的平台,而 Ljubisa 走向了另一个极端:彻底的专用化。

他们刚刚完成了 1.69 亿美元的融资,总融资额 2.19 亿。投资人里有个名字值得注意:Pierre Lamond。这位老爷子是 Fairchild Semiconductor 的元老,红杉资本的前合伙人,被公认为半导体行业的奠基人之一。这样的大佬背书,说明这件事至少在技术逻辑上是成立的。

现在的问题是:市场会买单吗?

Taalas 需要找到那些愿意为了效率和成本,牺牲灵活性的场景。比如语音助手,需要毫秒级响应,而且模型不需要经常换。比如数据标注,需要处理海量文本,用的是固定模型。比如一些垂直领域的专用模型,训练好了就不动了。

但也有人不看好。芯片制造是有污染的,如果每两年就要换一批芯片,这比 GPU 的更新换代更频繁,环保问题怎么算?还有人质疑,AI 模型进化这么快,两个月流片时间还是太长,等你做出来,模型可能已经过时了。

更根本的问题是:当 OpenAI、Google、Anthropic 都在拼命证明他们的新模型比旧模型好得多的时候,谁会愿意把自己锁死在一个固定的模型上?

Taalas 的反驳是:模型迭代的周期正在变长,人们开始依恋特定的版本。OpenAI 把用户从 GPT-4.5 迁移到 GPT-5 的时候,很多人抱怨新版本太谄媚了。也许未来我们会像对待手机型号一样对待 AI 模型:iPhone 15 出来后,还是有人用 iPhone 14,因为它们各有各的好。

我不知道 Taalas 会不会成功。这可能是一家改变行业的公司,也可能是一个技术史上有趣的注脚。

感兴趣的朋友可以去他们的demo站点体验一下什么是光速级别的inference:

chatjimmy.ai
 
 
Back to Top